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Abstract Imitation learning, which enables robots to learn behaviors from demonstrations by non-experts, 
has emerged as a promising solution for generating robot motions in such environments. The imitation 
learning-based robot motion generation method, however, has the drawback of being limited by the 
demonstrator's task execution speed. This paper presents a novel temporal ensemble approach applied to 
imitation learning algorithms, allowing for execution of future actions. The proposed method leverages 
existing demonstration data and pre-trained policies, offering the advantages of requiring no additional 
computation and being easy to implement. The algorithm’s performance was validated through real-world 
experiments involving robotic block color sorting, demonstrating up to 3x increase in task execution speed 
while maintaining a high success rate compared to the action chunking with transformer method. This study 
highlights the potential for significantly improving the performance of imitation learning-based policies, 
which were previously limited by the demonstrator's speed. It is expected to contribute substantially to future 
advancements in autonomous object manipulation technologies aimed at enhancing productivity. 
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1. Introduction 
 

Traditionally, for a robot to autonomously perform a specific 

task, operators had to manually engineer the robot's movements 

through rule-based hard coding. This approach requires meticulous 

reflection of the environment in which the robot operates and 

demands significant time and expertise to develop the rules[1]. 

Furthermore, while rule-based behavior generation is useful in 

structured environments like factories that require high 

productivity, it has limitations in unstructured environments where 

the robot's versatility and flexibility are restricted[2]. 

As robots are increasingly recognized as solutions to various 

social problems such as low birthrate and labor shortage, there is a 

growing effort to apply robots in unstructured environments. 

Imitation learning allows robots to exhibit autonomous behaviors 

like human experts by teaching them the desired tasks through 

demonstrations. These imitation learning algorithms overcome the 

limitations of robots that could only perform limited tasks in 

structured environments and provide versatility in performing 

various tasks in dynamically changing environments[3]. 

Imitation learning works on the principle of which a policy 

network, trained on data obtained through expert’s demonstrations, 

derives the robot's actions based on the observed information. In 

the field of autonomous driving, for example, driving angles and 

speeds are determined based on vision data obtained from cameras 

mounted around the car. In robotics, vision data from cameras and 

joint data from the robot are used to determine the robot's actions. 

Specifically, generating actions from image pixels has gained 

recognition for its potential, as it can successfully complete tasks 

without complex dynamics and environment modeling, leading to 

an increase in related research[4]. 

Although the idea of teaching robots through demonstrations 

has been decades, only recently has the increase in computational 

power and the advancement of cutting-edge deep learning 

algorithms such as generative AI and Transformers[5] significantly 

expanded the range of applicable tasks from laboratory scenarios 

to real world scenarios. In particular, the Action Chunking 

Transformers[6] (ACT) has solved issues such as cumulative errors 
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in learned policies and problems caused by low-quality data in 

demonstrations, enabling robots to perform difficult real-world 

tasks consistently, such as opening a translucent seasoning cup or 

placing a battery into a slot, with a success rate of 80-90%. 

The ACT algorithm operates as follows. First, when the trained 

policy derives actions from observations, it generates not just a 

single-step action but an action sequence for the upcoming time 

horizon. Then, during the stage of deciding the current action, the 

algorithm combines the predicted future actions at the current time 

step from the past inferences. This temporal action ensemble 

significantly enhances the robot's autonomous task performance, 

but there is still a limitation where the robot's operation speed is 

constrained by the demonstration data collected through 

teleoperation.  

In this paper, we propose a proleptic temporal ensemble 

algorithm that enables robots to autonomously perform object 

manipulation tasks faster than the demonstrator's task speed. The 

proposed method does not incur additional costs as it does not 

require additional training or computational burden, and it is simple 

and easy to implement while performing the task three times faster 

than the existing methods. 

This paper is structured as follows. Section 2 describes the 

imitation learning algorithm based on action chunking, which 

predicts future action sequences. Section 3 introduces the proposed 

proleptic temporal ensemble method. In Section 4, we analyze the 

performance of the proposed algorithm based on experimental 

results, and finally, in Section 5, we present the conclusion. 

 

2. Behavior Generation of Imitation Learning 
 

2.1 Imitation Learning for Dual-Arm Manipulation 
 

Imitation learning (behavior cloning) trains a model to mimic 

expert behavior by learning from demonstration data that captures 

actions based on observations. When a demonstrator uses a 

teleoperation device or other control mechanism to repetitively 

perform specific tasks with a robot, observations such as images 

and joint angles, and action data such as desired joint angles are 

collected during this process. During the training process, the 

model receives a dataset of observation-action pairs and learns a 

function that maps the current observation to the demonstrator's 

future actions. 

There are several methods for collecting demonstrator action 

data. One common approach involves the demonstrator 

teleoperating the robot using a master arms[6], while another 

method uses dedicated data collection devices[7]. Additionally, 

research has explored the use of wearable master arms equipped 

with cameras that recognize operator’s hand movements[8], or 

directly collecting data by having the demonstrator wear data 

gloves and body camera designed for data acquisition[9]. [Fig. 1] 

illustrates these data collection systems. Cameras used for 

collecting environmental data are typically mounted on the robot's 

head or attached to the wrist to observe object manipulation. The 

speed at which the demonstrator performs tasks during data 

collection directly influences the actions generated by the learned 

policy. 

Various studies have demonstrated successful applications of 

imitation learning in object manipulation tasks, such as cooking[10] 

or tying shoelaces[11]. Notable research includes works using 

Diffusion Policy and Action Chunking with Transformers (ACT), 

which utilizes Conditional Variational Autoencoders (CVAE)[12]. 

Both the Diffusion Policy and ACT focus on predicting future 

action sequences rather than simple immediate actions, operating 

in a manner similar to Model Predictive Control (MPC), which is 

called action chunking. Additionally, introducing generative AI 

techniques such as diffusion models or CVAE model enables the 

imitation learning model multimodal behaviors of human 

operators.  

In efforts to improve task performance and stability, C. Chi, et 

al[7] decreases the update speed of the inference by 0.5 times to slow 

down the execution of the generated behaviors. In these studies, 

data collected by humans, as shown in [Fig. 1(b)], exhibited fast 

speeds for the robot causing difficulty in tracking target points. 

However, increasing the update speed of the network inference for 

the faster motion of the robot comes with limitations, as it decreases 

the computational margin for the network inference which takes 

majority of the computational time due to its large model size. 

 

2.2 Action Chunking and Ensemble 
 

In this paper, we adopt the ACT algorithm for imitation learning. 

ACT fundamentally follows a CVAE structure, with the encoder 

and decoder using transformers. The CVAE encoder receives the 

robot’s action sequence and current pose as inputs and encodes the 

robot’s action modality into a style vector. The CVAE decoder 

takes the encoded style vector along with image data acquired 

through RGB stereo cameras and the robot’s end-effector pose 

sequence as inputs to output the robot’s future action sequence. The 

action space is also the robot’s end-effector pose. Defining the 

observation sequence containing the robot’s images and poses 

from the past time step 𝑡 − 𝑘௦ to the current time step 𝑡  as 

𝒔௧ିೞ:௧, and the action sequence from the current time step 𝑡 to 

[Fig. 1] Various Data Collection Methods: (a) Remote control of 

the master device, (b) Portable gripper, (c) Wearable device and 

hand recognition sensor, (d) Data glove. 
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𝑡 + 𝑘 as a 𝒂௧:௧ା  , the policy can be expressed as πఏ(𝒂௧:௧ାೌ
  ∣

 𝒔௧ିೞ:௧).  

[Fig. 2] illustrates the future action sequences predicted by the 

ACT at each step. The vector 𝒂ෝ௨∣௩ represents the estimated action 

at time u estimated at time v, with its magnitude defined by the 

degrees of freedom of the target robot. When predicting the future 

action sequences at each step, the action sequence predicted at 

instance t is as follows  

 

𝑨௧ = [𝒂ෝ௧∣௧     𝒂ෝ ௧ାଵ∣௧    𝒂ෝ௧ାଶ∣௧ ⋯  𝒂ෝ௧ାೌ∣௧].   (1) 

 

This method of predicting not only the robot's next step action 

but also the action sequences up to 𝑡 + 𝑘 is defined as action 

chunking ([Fig. 1]). Action chunking was designed to address the 

compounding errors that arise in the robot's intricate object 

manipulation tasks. Compared to traditional approaches that only 

infer the next step's action, the use of the action chunking technique 

enhances the consistency of the robot's behavior. In the ACT 

algorithm, when applying the action 𝑨௧  to the robot, a weight 

function is used to ensemble the actions predicted at the current 

point from the past. First, we define the matrix 𝜝௧, which consists 

of the actions inferred from the past to the present, as follows ([Fig. 

1]). 

 

𝜝௧ = [𝒂ෝ௧∣௧      𝒂ෝ ௧∣௧ିଵ    𝒂ෝ௧∣௧ିଶ  ⋯ 𝒂ෝ௧∣௧ିೌ
].    (2) 

 

Furthermore, the final input 𝒂௧   to the robot, incorporating the 

weight function based on the exponential function, is defined as 

follows 

 

𝒂௧   =   ∑ 𝑤
 
 𝛣௧[𝑖]/ ∑ 𝑤

 
    ,  𝑤   =  exp(−𝑚  ∗ 𝑖).  (3) 

 

Where the parameter m represents the slope of the weight function. 

A higher value of m places greater emphasis on the most recently 

estimated actions. A large value of m enables the robot to respond 

quickly to unexpected disturbances or environmental changes, 

resulting in high responsiveness. Conversely, a lower m generates 

more consistent behavior in the presence of environmental noise. 

Therefore, it is important to adjust the value of m to find an 

appropriate balance between the robot's responsiveness and 

consistency. In all experiments conducted in this study, m was set 

to 0.05. 

 

2.3 The speed limitations of imitation learning policies 
 

The movements of the robot derived from imitation learning 

policies are entirely dependent on the collected data used during the 

training process. In the data collection process, the operator 

manipulates the robot using a teleoperation device, and various task 

speeds are recorded depending on the operator's skill level. Even if 

only fast task data is collected from skilled operators to improve the 

robot's task speed, the inherent limitations of imitation learning 

algorithms prevent the robot's task speed from surpassing that of 

the operator. The next chapter introduces a proleptic temporal 

ensemble technique that improves the robot's task speed during the 

inference process without requiring additional training. 

 

3. Proleptic Temporal Ensemble 
 

3.1 Proleptic Temporal Ensemble 
 

To accelerate the speed of robot movements generated by 

imitation learning algorithms, we propose the proleptic temporal 

ensemble technique. [Fig. 3] serves as an example to illustrate the 

proposed method, assuming that five actions are predicted at each 

step, and displays the actions predicted over the last six steps in 

blocks. The blocks marked as ‘α’ in [Fig. 3] represent the actions 

used at the current time, predicted from the past, and are the 

components defined in Equation (2) as 𝜝௧. 

The proposed proleptic temporal ensemble uses 𝜝௧ା (𝑓 <

 𝑘) instead of 𝜝௧ in the calculation of input 𝒂௧ as described in 

Equation (3). 𝜝௧ା is defined as follows  

 

𝜝௧ା = [𝒂ෝ௧ା∣௧      𝒂ෝ ௧ା∣௧ିଵ    ⋯ 𝒂ෝ௧ା∣௧ିೌା].    (4) 

 

It consists of f fewer 𝒂ෝ௨∣௩ compared to 𝜝௧. For example, if f is 2,  

𝜝௧ାଶis defined by the blocks marked as ‘γ’ in [Fig. 3]. 

As a result, the proleptic temporal ensemble expects to enhance 

the robot's task speed by using a weighted average of future control 

inputs through the ensemble method, instead of relying on the 

inferred current control input as the target value at the present time. 

 

[Fig. 2] Action Chunking and ensemble. 

[Fig. 3] Structure of action chunking. 
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3.2 Proleptic Variables  
 

The proposed proleptic temporal ensemble technique sets future 

action points as targets for the robot, allowing it to move more 

quickly to follow these targets. Research[7] has shown that reducing 

the action update cycle to increase task speed is not suitable for 

object contact tasks that require precision at high speeds. Therefore, 

the proleptic variable f needs to be set to an appropriate value 

depending on the task. Precise tasks require careful execution, 

while non-contact free motions are better suited for faster speeds. 

The next chapter validates the changes in task success rates and 

task speeds based on the proleptic variable f through repeated 

experiments. 

 

4. Experimental verification 
 

4.1 Block Color Classification Task 
 

To analyze the performance of the algorithm presented in this 

paper, we selected a block color classification task as the robot's 

operation. [Fig. 4] illustrates the classification task environment. 

Two six-degree-of-freedom robotic arms are each equipped with 

a one-degree-of-freedom gripper to perform the task of picking up 

orange and blue blocks and placing them into boxes of the 

corresponding colors. The blocks are identical in size and shape, 

differing only in color, and their orientations and positions are 

randomly arranged. The boxes are placed at either end of the table 

without any fixation. 

 

4.2 Data Collection for Learning 
 

[Fig. 5] shows the data collection environment. To remotely 

control the robots, we developed a master control device with a 

total of seven degrees of freedom, including six degrees for the 

robot joints and one for the gripper. The master device was 

designed to have a scale size of 2:1 relative to the robotic arm, and 

the data structure transmitted from the master device to the robot is 

as follows   

 

[𝒑୰   𝒐୰  𝜃୰   𝒑୪   𝒐୪  𝜃୪] .  (5) 

 

Where, 𝒑୰ ∈  ℝ3×1 , 𝒐୰ ∈  ℝ3×1 , 𝜃୰ ∈ [0,1]  represent the 

position of the endpoint of the right arm master device, the Euler 

angles corresponding to its orientation, and the gripping degree of 

the gripper, respectively. The subscripts r and l denote the right and 

left arms, respectively. 

Surrounding environmental data was collected using three 

stereo cameras. As shown in [Fig. 5], two cameras were attached 

to the wrist, while the remaining one was fixed at a third position. 

The images captured by the stereo cameras are displayed in [Fig. 

6], resulting in a total of six images with a resolution of 640x480. 

The demonstrator operated the robot using a teleoperation 

device, repeatedly performing the task of picking up a total of six 

blocks and placing them into boxes of the corresponding colors. 

The blocks were randomly arranged in the center of the table, as 

illustrated in [Fig. 4], [Fig. 5], and [Fig. 7]. If the box position to 

which a block needed to be moved during the classification process 

was outside the robotic arm's workspace, the task was carried out 

by transferring the block between the robots. For example, in [Fig. 

4], if robot R needed to pick up block L and place it in box L, robot 

R first grasped block L and transferred it to robot L, which then 

placed the received block L into box L. 

Since images constitute a significant portion of the data, various 

lighting conditions were used to collect data, as seen in [Fig. 7]. The 

colors of the boxes were also alternated to obtain diverse data. For 

each environment, data was collected through a total of 1,000 

demonstrations, with 250 repetitions per environment, resulting in 

a total dataset of 1.1 million samples collected at a rate of 20 

[Fig. 7] Data collecting environment: (a) Basic, (b) boxes swapped, 

(c) with lights off, (d) with lights off and boxes swapped. 

[Fig. 4] Experimental environment. 

[Fig. 5] Teleoperation environment. 
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samples per second. 

 

4.3 Policy Learning 
 

[Fig. 8] illustrates the policy architecture utilizing a transformer-

based encoder and decoder. Stereo images with a resolution of 640 

x 480 are combined in pairs to create three images of size 1280 x 

480, which are then input into the encoder. The term 'pose' is 

defined as the robot's information as follows:  

 

[𝒑୰ 𝒊୰ 𝒋୰ 𝒌୰  𝜃୰  𝒑୪  𝒊୪ 𝒋୪ 𝒌୪   𝜃୪]  .  (6) 

 

The unit vectors 𝒊, 𝒋, 𝒌 convey the orientation information of each 

robotic arm's endpoint, representing the columns of the rotation 

matrices for the right and left arms as follows: 

 

𝑹୰ = [𝒊୰ 𝒋୰ 𝒌୰], 𝑹୪ = [𝒊୪ 𝒋୪ 𝒌୪]. (6) 

 

The training was conducted using eight GTX 4090 servers with 

NVIDIA's Apex library for distributed learning, utilizing a total of 

1.1 million data samples over approximately one week and 

100,000 training steps. The batch size was set to 256, and the 

AdamW optimizer was employed as the parameter update 

algorithm. The policy was structured as πఏ(𝒂௧:௧ାଶସ   ∣   𝒔௧ିଵ:௧) 

where it receives the latest two environmental inputs to predict the 

future sequence of 24 actions. The update frequency for the robot's 

target point was set to 20 Hz. 

 

4.4 Evaluation of Proleptic Temporal Ensemble Performance 
 

To evaluate the performance of the ACT-based imitation 

learning algorithm, classification experiments were conducted 

under the condition of f = 0, involving both single block and four 

block classification tasks. The single block classification task was 

performed a total of 120 times, varying the position of the box, 

lighting conditions, and the color of the block. The success rate for 

the task of picking up one block and placing it into the box was 

recorded at 83.33%. The causes of failure included instances where 

blocks were placed in boxes of a different color, accounting for 5%, 

and covariate shift issues, which totaled 11.66%. The covariate 

shift problem refers to errors occurring in state spaces that were not 

addressed by the collected data. For example, there were cases 

where two robotic arms attempted to grasp a block positioned in 

the center simultaneously, leading to a halt to avoid a collision, or 

situations where they failed to recover their posture under specific 

conditions. 

In the same varied environments, the experiment involving the 

classification of four blocks was carried out 50 times, yielding a 

success rate of 65%. The failure cases included 12% due to color 

classification errors, 18% attributed to covariate shift problems, 

and 6% where blocks were ejected during grasping.  

To analyze the performance of the proposed proleptic temporal 

ensemble algorithm, experiments were conducted to pick up one 

block and place it into the nearest box for various values of f. [Fig. 

9] illustrates the experimental process. For each value of f, 20 trials 

were conducted, and the average time taken and success rates were 

listed in [Table 1]. A failure was considered if the block could not 

be picked up in one attempt or if it could not be placed into the box. 

The experimental results demonstrated that at a 75% success rate, 

Table 1. Experiment result with various f. 

f Average elapsed time Succes rate 

0 7.274 100 

5 5.480 100 

10 4.024 100 

15 3.214 95 

20 2.418 75 
[Fig. 8] Architecture of action chunking with transformer. 

[Fig. 9] Performance Evaluation Experimental Procedure: (a) 

Initial, (b) Grasp, (c) Carry, (d) Release. 
[Fig. 10] Snapshots of the object classification task for unseen 

objects during the training process with f = 0. 
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the task speed increased up to threefold, while confirming that the 

speed could be doubled without any loss in success rate. 

 

4.5 Discussion and Future Work  
 

In the data collection process, only orange and blue two-blocks 

were utilized. To investigate the scalability of the policy, 

classification experiments were conducted on previously 

uncollected data for blue four-blocks, green three-blocks, purple 

two-blocks, and differently shaped yellow-green blocks [Fig. 10]. 

The experimental results indicated that the blue and purple blocks 

were classified into the blue box, while the green and yellow blocks 

were classified into the yellow box. 

[Fig. 11] illustrates the block classification task using the 

proleptic temporal ensemble algorithm proposed in this paper. The 

task of classifying four blocks, including the transfer of blocks, 

took 13 seconds, demonstrating improved speed performance 

compared to the 37 seconds taken for the unseen four-object 

classification task shown in [Fig. 10].  

For environmental perception, this study employed three stereo 

cameras. The wrist camera was used to observe the gripping state 

of the objects, while the head camera was utilized to monitor the 

color information of the boxes placed on both sides. Let us assume 

a block classification task conducted using the policy 

πఏ(𝒂௧:௧ାೌ
  ∣   𝒔௧ିೞ:௧) with a low 𝑘௦. [Fig. 11](f) depicts a scene 

where a block is handed over to the left, but when viewed in 

isolation, it could be interpreted as the block being received from 

the right. If only the wrist camera were used for the classification 

task, there would be no color information regarding both boxes, 

resulting in observations of the two robots repeatedly handing 

blocks to each other. In future work, we plan to conduct research 

on generating appropriate actions when the acquired 

environmental information is the same, but the situations differ. 

 

5. Conclusion 
 

In this paper, we propose a proleptic temporal ensemble that 

enhances the performance of imitation learning algorithms, which 

generate robot actions by learning from demonstrator data. The 

proposed algorithm operates by incorporating future actions 

predicted by the policy into the current stage to improve the speed 

of robot tasks. Our proposed method has the advantage of saving 

time and costs as it does not require new data collection or policy 

retraining. To evaluate the performance of the proposed proleptic 

temporal ensemble algorithm, we conducted a block color 

classification task using a CVAE-based ACT algorithm with a 

dual-arm robot. The experimental results confirmed a 3x 

improvement in speed. This study demonstrates the enhanced 

performance of imitation learning-based policies, which were 

previously limited by the demonstrator’s task speed. It is expected 

to contribute to productivity increases in future autonomous object 

manipulation technologies. 
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지능형융합시스템전공 (공학박사) 

2024~현재  (주)로브로스 책임연구원 

관심분야: 휴머노이드, 모방학습, 강화학습, 딥러닝 

 

김 승 연 

2015  서울대학교 기계항공공학부 (공학사) 

2023  서울대학교 융합과학기술대학원 

지능형융합시스템전공 (공학박사) 

2023~2024 삼성전자 종합기술원 

2024~현재  (주)로브로스 책임연구원 

관심분야: 휴머노이드, 로봇핸드 

 

박 수 민 

2010  서울과학기술대학교 

기계설계자동화공학부 (공학사) 

2012  서울대학교 융합과학기술대학원 

지능형융합시스템학과 (공학석사) 

2020  서울대학교 융합과학기술대학원  

지능형융합시스템전공 (공학박사) 

2020~2021 한국생산기술연구원 박사후연구원 

2021~현재  (주)로브로스 책임연구원 

관심분야:  대규모언어모델, 휴머노이드 로봇 보행, 생체역학 


